On the Hochschild homology of open Frobenius algebras
نویسنده
چکیده
We prove that the Hochschild homology (and cohomology) of a symmetric open Frobenius algebra A has a natural coBV and BV structure. The underlying coalgebra and algebra structure may not be resp. counital and unital. Moreover we prove that the product and coproduct satisfy the Frobenius compatibility condition i.e. the coproduct on HH∗(A) is a map of left and right HH∗(A)-modules. If A is commutative, we also introduced a natural BV structure on the relative Hochschild homology H̃H∗(A) after a shift in degree. We anticipate that the product of this BV structure to be related to the Goresky-Hingston product on the cohomology of free loop spaces.
منابع مشابه
On algebraic structures of the Hochschild complex
We first review various known algebraic structures on the Hochschild (co)homology of a differential graded algebras under weak Poincaré duality hypothesis, such as CalabiYau algebras, derived Poincaré duality algebras and closed Frobenius algebras. This includes a BV-algebra structure on HH(A,A) or HH(A,A), which in the latter case is an extension of the natural Gerstenhaber structure on HH(A,A...
متن کاملHochschild homology of structured algebras
We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any PROP with A∞–multiplication—we think of such algebras as A∞–algebras “with extra structure”. As applications, we obtain an integral version of the Costello-Kontsevich-Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler-Zeinalian action of Sulliv...
متن کاملar X iv : m at h / 04 10 62 1 v 1 [ m at h . Q A ] 2 9 O ct 2 00 4 HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY
We study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras and establish the Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras thus generalising previous work by Loday and Gerstenhaber-Schack. These results are then used to show that a C∞-algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-alge...
متن کاملHochschild (co)homology of exterior algebras
The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کامل